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Abstract-In this paper, the Multiple Attribute Group Decision Making (MAGDM) problems with Intuitionistic 

Fuzzy Sets (IFSs) are investigated where the weights of the decision makers about the behaviour of attributes are 

provided in the form of Singularly Perturbed Delay Differential Equations (SPDDEs). The Decision maker weights 

are computed using the numerical solutions with a finite difference scheme on Shishkin mesh of SPDDEs. The 

Intuitionistic Fuzzy Ordered Weighted Averaging (IFOWA) and the Intuitionistic Fuzzy Hybrid Averaging (IFHA) 

operators are used to aggregate the intuitionistic fuzzy decision matrices. A new correlation coefficient of IFS is 

proposed and utilised to rank the best alternative. Feasibility and effectiveness of the proposed method is supported 

with a numerical illustration. Comparison of the proposed model is made with some of the existing distance 

measures, similarity measures and score functions of ranking the alternatives. 

 

Index Terms-MAGDM; Intuitionistic Fuzzy Sets; OWA operator; Singular perturbation problem; Delay 

differential equation; Shishkin mesh; Finite difference scheme.  

1. INTRODUCTION 

In the year 1965, Zadeh [50] introduced the 

concept of fuzzy set. It contains only a membership 

function. Later Atanassov [1], [2] and [3] introduced 

the new type of fuzzy set named as Intuitionistic 

Fuzzy Sets (IFSs) which is the extension of the 

concept of fuzzy set. IFSs contains both the 

membership function and non-membership function. 

For decision making problems, Szmidt & Kacprzyk 

[40-44] found the distance between intuitionistic 

fuzzy sets. The relationship between intuitionistic 

fuzzy sets, L-fuzzy sets, interval-valued fuzzy sets 

and interval-valued intuitionistic fuzzy sets were 

established by Deschrijver & Kerre [10]. For 

different higher order intuitionistic fuzzy sets, the 

correlation coefficient was proposed and discussed 

by Robinson & Amirtharaj [31] to [36] and Robinson 

[37] and also utilized the correlation measures of 

ranking the best alternatives in the decision making 

problem. Yager [49] proposed the ordered weighted 

averaging (OWA) operator by giving some weights 

to all inputs according to their ranking positions. 

Based on its pioneer work, many extensions have 

been appearing over it to solve the problems of 

multi-criteria decision making problems. Some 

geometric aggregation operators for intuitionistic 

fuzzy sets was proposed and developed by Xu & 

Yager [48]. Xu also developed some arithmetic 

aggregation operators, such as the intuitionistic fuzzy 

weighted averaging (IFWA) operator, the 

intuitionistic fuzzy ordered weighted averaging 

(IFOWA) operator, and the intuitionistic fuzzy 

hybrid aggregation (IFHA) operator in [46] and [47]. 

Robinson & Jeeva [38] proposed and discussed the 

various applications of numerical methods in 

MAGDM problems especially in situations where the 

weights of the decision makers are completely 

unpredictable. 

Singularly Perturbed Problems or Singular 

Perturbation Problems (SPPs) always play a 

prominent role in the theory of differential equations 

and in their applications to the physical world. 

Singularly Perturbed Differential Equations (SPDEs) 

are characterized by a small positive parameter 
multiplying the highest order derivative and/or the 

lower order derivatives of the differential equations. 

In [12], [19], [22], [23], [25] and [28], applications of 

SPP can be extensively observed. A SPP is said to be 

convection diffusion type if the order of the 

differential equation is reduced by one when the 

perturbation parameter   is set equal to zero. If the 

order reduces by two, then it is known as reaction 

diffusion type problem. Miller et.al.in [22] and [23] 

have devoted their work towards fitted mesh 

methods and their parameter uniform convergence 

have also been established. Malley [21] & Nayfeh 

[26] gave an introduction to singular perturbation 

problems. Manikandan et.al. [20] presented a 

numerical method composed of a classical finite 

difference scheme applied on a piecewise-uniform 

Shishkin mesh is suggested to solve the singularly 

perturbed delay differential problem. O’Riordan [29] 

discussed the presence of any interior layer typically 
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requires the introduction of a transformation of the 

problem, which facilitates the necessary alignment of 

the mesh to the trajectory of the interior layer. For 

discontinuous source term, De Falco & O’Riordan 

[9] were proposed a uniformly convergent scheme 

for a system of two coupled singularly perturbed 

reaction-diffusion robin type and mixed boundary 

value problems. 

  

Literature Survey on Delay Differential 

Equations 

Extensive works on asymptotic and 

numerical methods for second order singularly 

perturbed delay differential problems are reported in 

the literature. In [5], a class of delay differential 

equations with a perturbation parameter   is 

examined. A hybrid finite difference scheme on an 

appropriate piecewise uniform mesh of Shishkin-

type is derived in [6]. In [16] and [17], boundary 

value problems for second order singularly perturbed 

delay differential equations are treated. In [20], a 

boundary value problem for a second-order 

singularly perturbed delay differential equation is 

considered. The singular perturbation theory in 

ordinary differential equations is extended to delay 

differential equations with a fixed lag is discussed in 

[45]. The study in [11] is devoted to the numerical 

study of boundary value problems for singularly 

perturbed linear second-order differential-difference 

equations with a turning point. In [27], the solution 

to a singularly perturbed second order differential 

equation with a constant delay having finite element 

approximation method is studied. In [30], a 

numerical finite difference method to solve the 

boundary-value problem for singularly perturbed 

differential-difference equation, which contains only 

negative shifts in the differentiated term. In [39], 

they have studied a numerical solution of singularly 

perturbed differential-difference equations exhibiting 

dual layer behaviour. In [13] and [14], computational 

methods are presented for solving singularly 

perturbed delay differential equations with negative 

shift whose solution has boundary layer. In [18], a 

system of singularly perturbed ordinary differential 

equations of first order with given initial condition is 

considered. In [4], a parameter fitted scheme is 

proposed to solve singularly perturbed delay 

differential equations of second order with left and 

right boundary. In [16], a numerical method is 

proposed to solve boundary-value problems for 

singularly perturbed differential-difference equations 

with negative shift. A uniformly-convergent second 

order Richardson extrapolation technique for solving 

singularly perturbed delay differential equation is 

proposed in [24].  

In this paper, the decision maker presents 

his/her attribute weights in the form of a SPDDE. 

The SPDDEs are solved through numerical methods 

with a newly proposed finite difference scheme on 

Shishkin mesh. There are three decision makers in 

this work whose weights are determined and 

normalized and utilized in decision making 

problems. We have investigated the MAGDM 

problem with intuitionistic fuzzy set for ranking the 

alternatives together with IFOWA and IFHA 

operators. Correlation coefficient of IFSs in the range 

[0,1] is proposed and utilised for ranking the 

alternatives. A numerical illustration is given to show 

the effectiveness of the proposed approach. 

2. PRELIMINARIES 

In this Section, some basic concepts about 

the IFSs and different classes of aggregation 

operators are presented.    

 

DEFINITION: Intuitionistic Fuzzy Set,  IFS [1-3] 

An IFS A in X is given by 

 ,  ( ),  ( ) ,A AA x x x x X   where

 :  0,1A X  ,  :  0,1A X  , with the condition 

0 ( ) ( ) 1,   A Ax x x X      . The numbers 

 A x  and  A x  represent, the membership degree 

and non-membership degree of the element x to the 

set A, respectively. 

 

DEFINITION: Hesitancy Degree of an IFS 

For each IFS A in X, if 

     1 ,   ,A A Ax x x x X       then  A x  is 

called the degree of indeterminacy or hesitancy of x 

to A, where 0 ≤   1A x  , for all xX. 

2.1.  Different classes of aggregation operators 

Different types of aggregation operators are 

found in the literature for aggregating the 

information. Different families of OWA operators can 

be used by choosing a different manifestation of the 

weighting vector which in detail is discussed in [46], 

[47] and [49].  

 

DEFINITION: Intuitionistic Fuzzy Weighted 

Averaging (IFWA) operator 

Let  , ,j j ja   for all j = 1,2,…,n be a 

collection of intuitionistic fuzzy values. The 

Intuitionistic Fuzzy Weighted Averaging (IFWA) 

operator, :   nIFWA Q Q  is defined as: 

 1 2

1 1 1

, ,...,

1 (1 ) ,j j

n

n nn

j j j j

j j j

IFWA a a a

a



 
  

  

 
    

 
  
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where  1 2, ,...,
T

n     be the weight vector 

of ,ja  for all j = 1,2,…,n such that  0j   and 

1

1.
n

j

j




  

 

DEFINITION: Intuitionistic Fuzzy Ordered 

Weighted Averaging (IFOWA) operator 

Let  , ,j j ja   for all j = 1,2,…,n 

be a collection of intuitionistic fuzzy values. The 

Intuitionistic Fuzzy Ordered Weighted Averaging 

(IFOWA) operator :   nIFOWA Q Q
 
is defined 

as: 

 

      

1 2

1 1 1

, ,...,

1 1 ,
j

j

w n

n nn w
w

j j j j
j j j

IFOWA a a a

w a
  

 
  

 
    

 
  

 Where  1 2, ,...,
T

nw w w w  is the 

associated weighting vector such that 0jw  and 

1

1
n

j

j

w


 . Furthermore,       1 , 2 ,..., n    is a 

permutation of (1,2,…,n), such that 
   1j j

a a
 

  

for all j = 2,…,n. 

 

DEFINITION: Intuitionistic Fuzzy Hybrid 

Averaging (IFHA) Operator 

 Let ( , )j j ja   , for all 1,2,...,j n  

be a collection of intuitionistic fuzzy values. The 

Intuitionistic Fuzzy Hybrid Aggregation (IFHA) 

operator, : nIFHA Q Q  is defined as: 

, 1 2 ( )

1

( , ,..., )
n

w n j j

j

IFHA a a a a w 


  

=
( ) ( )

1 1

1 (1 ) , ( ) ,
j j

j j

w wn n

a a

j j
 

 
 

 
  

  
   

where 1 2( , ,..., )T

nw w w w  is the associated 

vector such that  0jw   and 
1

1
n

j

j

w


 , and  

1 2( , ,..., )T

n     is the weight vector of ja , 

for all  1,2,...,j n  such that  0j   and 

1

1.
n

j

j




 Furthermore ( )ja  is the 
thj  largest of 

the weighted IFNs 
jn

j ja a


 , 1,2,..., .j n  

3. CORRELATION COEFFICIENT OF 

INTUITIONISTIC FUZZY SETS(IFSs) 

In this paper, we propose a new method for 

calculating correlation coefficient of IFSs based on 

the method proposed by Robinson & Amirtharaj [31] 

for calculating correlation coefficient of vague sets, 

taking not only the membership and non-membership 

grades into account but also the negation of non-

membership degree and hesitancy degree also. Let 

 1 2, ,...., nX x x x  be the finite universal set and 

let , ( )A B IFS X , be given by  

 , ( ), ( ), ( ) /A i A i A iA x x x x x X    ,  

 , ( ), ( ), ( ) /B i B i B iB x x x x x X    . 

The correlation of , ( )A B IFS X  is defined as 

follows: 

 
      

      1

11
,

1

n
A i B i A i

IFS

i B i A i B i

x x x
C A B

n x x x

  

  

  
 

   
  

And the correlation coefficient of , ( )A B IFS X  

is defined as follows: 

 
 ,

,
( , ) ( , )

IFS

IFS

IFS IFS

C A B
K A B

C A A C B B
  

The following proposition and theorems are true for 

the above defined correlation coefficient. 

 

Proposition: For , ( )A B IFS X , we have  

i) 0 ( , ) 1IFSC A B  .  

ii) ( , ) ( , )IFS IFSC A B C B A . 

iii) ( , ) ( , )IFS IFSK A B K B A . 

 

Theorem 3.1. For , ( )A B IFS X , then 

0 ( , ) 1IFSK A B  . 

Theorem 3.2. ( , ) 1IFSK A B A B   . 

Theorem 3.3. ( , ) 0IFSC A B   A and B are non-

fuzzy sets and satisfy the condition 

( ) ( ) 1A i B ix x   or  ( ) ( ) 1A i B ix x   or

( ) ( ) 1A i B ix x   , ix X  . 

Theorem 3.4. ( , ) 1IFSC A A   A is a non-fuzzy 

set.  

4. SINGULARLY PERTURBED DELAY 

DIFFERENTIAL EQUATIONS (SPDDEs) 

A singularly perturbed delay differential 

equation is an ordinary differential equation in which 

the highest derivative is multiplied by a small 

parameter and involving at least one delay term. 

Delay Differential Equations (DDEs) with constant 
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lags 0j   for j = 1,2,…,k have the form:

1( ) ( , ( ), ( ),...., ( ))ky t f t y t y t y t     .  An 

initial value (0) (0)y   is not enough to define a 

unique solution of 

1( ) ( , ( ), ( ),...., ( ))ky t f t y t y t y t     on an 

interval a t b  .The function ( ) ( )y t t  must 

be specified for t a  so that ( )jy t  is defined 

when ja t a    . The function ( )t  is called 

the history of the solution. 

In this section, a novel numerical method is 

suggested to solve a second-order SPDDE of 

reaction-diffusion type. A hybrid finite difference 

scheme with an appropriate piecewise uniform 

Shishkin-type mesh is derived. It is shown that the 

method is almost second order convergence in the 

maximum norm, independent of the perturbation 

parameter. 

( ) ( ) ( ) ( ) ( ) ( 1) ( )Lu x u x a x u x b x u x f x      

on (0,2)                                                               (1)   

With [ 1,0]u on  and (2)u l
          

(2) 

Where φ is sufficiently smooth on [-1,0]. For all 

[0,2],x  it is assumed that a(x) and b(x) satisfy, 

( ) ( ) 2a x b x   and ( ) 0b x  , for some real number 

0.   Furthermore, the functions a(x), b(x) and f(x) 

are assumed to be in 3([0,2]).C  

The above assumptions ensure that 
0 1 2([0,2]) ((0,2)) ((0,1) (1,2)).u C C C C    

The  problem (1) and (2) can be rewritten as 

 
1 ( ) ( ) ( ) ( )

( ) ( ) ( 1) ( ) .on 0,1

L u x u x a x u x

f x b x x g x





  

   
 

 
2 ( ) ( ) ( ) ( )

2

( ) ( 1)

( ) on 1,

L u x u x a x u x b x u x

f x

     


 

on [ 1,0], (1 ) (1 ), (1 ) (1 ),u u u u u           

and (2) .u l  

The reduced problem corresponding to (1) and (2) is 

defined by 

0( ) ( ) ( )a x u x g x  on (0,1) 

0 0( ) ( ) ( ) ( 1) ( )a x u x b x u x f x    on (1,2). 

4.1. Shishkin mesh 

In comparison with that of uniform mesh, in 

piecewise-uniform mesh we give more mesh points 

in the inner domains so that the layer information can 

be obtained. A piecewise-uniform Shishkin mesh 

with N mesh intervals is now constructed on 

[0,2]  as follows: 

Let
1 2

N N N    where 

   
1 1

2
1 21 1

2

,
N

N
N N

Nj jj j
x x

 

  
    and 

2

1Nx  .  

Then    2
1 20

2

, ,
N

N

Nj jj j
x x

 
   

    1 2 0
, and 0,2 .

N
N N N N

j j
x


     

The interval [0,1] is divided into three subintervals as 

follows: [0, ] ( ,1 ] (1 ,1].        

The parameter , which determine the points 

separating the uniform meshes, is defined by  

1
min ,2 ln .

4
N






  
  

  

 

Then, on the sub-interval ( ,1 ]  , a uniform mesh 

with N/4 mesh points is placed and on each of the 

subintervals [0, ] and (1 ,1],   a uniform mesh 

of N/8 mesh points is placed. 

Similarly, the interval (1,2] is also divided into 3 

subintervals (1,1 ],(1 ,2 ] and (2 ,2]       , 

using the same parameter  . In particular, when the 

parameter   takes on its left-hand value, the 

Shishkin mesh 
N becomes a classical uniform 

mesh throughout from 0 to 2.In practice, it is 

convenient to take N=8k, 2k  .  

4.2. Discrete problem 

In this section, a hybrid finite difference 

scheme operator with an appropriate Shishkin mesh 

is used to construct a numerical method for (1) and 

(2).The discrete two-point boundary value problem is 

now defined to be: 
2( ) ( ) ( ) ( )

( ) ( 1) ( ), on , .

N

j j j j

N N

j j j

L U x U x a x U x

b x U x f x U u on

   

    

 

The above problem can be rewritten as  
2

1

2

2

0 2 0 2

( ) ( ) ( ) ( )

( ), on ,

( ) ( ) ( ) ( )

( ), on ,

on , ( ) ( ).

N

j j j j

N

j

N

j j j j

N

j

N N

L U x U x a x U x

g x

L U x U x a x U x

g x

U u D U x D U x









 

  

 

  

 

  

 

Where 2 ( ) ( ),j j

D D
U x U x

h


  
  
 

 1
.

2

j jh h
h


  

1 1

1

( ) ( ) ( ) ( )
( ) ; ( ) .

j j j j

j j

j j

U x U x U x U x
D U x D U x

h h

  



 
   
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The Novel Hybrid Scheme for SPDDEs is given as: 

 

1 1

0

1

1 2

0

3 ( ) 4 ( ) ( )
( ) ,

2

3 ( ) 4 ( ) ( )
( )

2

j j j

j

j

j j j

j

j

U x U x U x
D U x

h

U x U x U x
D U x

h

 



 

 


 


 

This is used to compute numerical approximations to 

the solution of (1) and (2). 

 

The following discrete results are analogous to those 

for the continuous case. 

 

Lemma 4.2.1. Let conditions ( ) ( ) 2a x b x    and 

( ) 0b x  hold. Then, for any mesh function ψ, the 

inequalities 0  on ,N 1 10 on ,N NL   

2 20 on ,N NL    and 
2 2( ) ( ) 0N ND x D x     

imply that 0   on .N  

An immediate consequence of this is the 

following discrete stability result. 

 

Lemma 4.2.2. Let conditions ( ) ( ) 2a x b x   and 

( ) 0b x  hold. Then, for any mesh function , 

1

2

0 1

2

1
( ) , ( ) , ,

( ) max , 0 .
1

N

N

N

N

j

N

x x L

x j N

L

  











 
  

   
 
  

 

5. DETERMING EXPERTS WEIGHTS 

FOR MAGDM PROBLEMS USING 

SPDDEs 

Problem proposed by the decision maker-1: 

The decision maker represents weighting 

vector about the behaviour of the attributes in the 

form of the following Singularly Perturbed delay 

differential Equation: 

( ) 4 ( ) ( 1) 1u x u x u x x       for (0,2),x
2( )u x x for [ 1,0], (2) 0x u   . 

Four distinct points based on the parameter  are 

identified and the numerical solutions at those points 

are chosen and normalized for obtaining the 

weighting vector. Details of the weight vector from 

the decision maker-1 are given in the following table. 

 

                 Table 1. Numerical Solution of 

               ( ) 4 ( ) ( 1) 1u x u x u x x      
 

X Values of  U(X) Weight vector 

0.2500000 0.4534445 0.190232379 

0.7500000 0.4536239 0.190307642 

1.2500000 0.6758255 0.283527296 

1.7500000 0.8007408 0.335932683 

 

Hence, the weighting vector given by the first 

decision maker is calculated as 

0.190232379,0.190307642,
.

0.283527296,0.335932683

T


 

  
 

 

The maximum point wise errors and the rate of 

convergence are calculated using the two mesh 

algorithm in [12] and are presented in the following 

table: 

    

Table 2. Values of , , , for = and =0.9.
4

N N N N

pD D p C


   

  128 256 512 1024 

22
 

0.674E-03 0.336E-03 0.168E-03 0.840E-04 

32
 

0.921E-03 0.461E-03 0.230E-03 0.115E-03 

42
 

0.128E-02 0.642E-03 0.320E-03 0.160E-03 

52
 

0.180E-02 0.907E-03 0.453E-03 0.226E-03 

62
 

0.250E-02 0.128E-02 0.643E-03 0.321E-03 

ND  
0.250E-02 0.128E-02 0.643E-03 0.321E-03 

Np  
0.961E+ 

00 

0.999E+00 0.100E+01  

N

pD  
0.544E+00 0.544E+00 0.529E+00 0.514E+00 

 

The order of convergence=0.9605488E+00. 

The error constant=0.5436762E+00. 

It can be noted that as N increases and   decreases, 

the error decreases. Numerical solution of

( ) 4 ( ) ( 1) 1u x u x u x x        is displayed in 

figure 1.   

           Figure 1.   Numerical solution of  

        ( ) 4 ( ) ( 1) 1u x u x u x x        

Problem proposed by the decision maker-2: 

The decision maker represents weighting 

vector about the behaviour of the attributes in the 

form of the following Singularly Perturbed delay 

differential Equation: 
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( ) 4 ( ) ( 1) 2u x u x u x      for (0,2),x
2( )u x x where [ 1,0], (2) 0.x u    

Four distinct points based on the parameter  are 

identified and the numerical solutions at those points are 

chosen and normalized for obtaining the weighting 

vector. Details of the weight vector from the decision 

maker-2 are given in the following table. 

 

               Table 3. Numerical Solution of 
                 ( ) 4 ( ) ( 1) 2u x u x u x       

X Values of  U(X) Weight vector 

0.2500000 0.6408602 0.261998543 

0.7500000 0.5161290 0.211005530 

1.2500000 0.6601004 0.269864384 

1.7500000 0.6289553 0.257131543 

 

Hence, the weighting vector given by the first decision 

maker is calculated as 

0.261998543,0.211005530,
.

0.269864384,0.257131543

T

w
 

  
   

The maximum point wise errors and the rate of 

convergence are calculated using the two mesh 

algorithm in [12] and are presented in table 4: 

 

   Table 4. Values of , , , for = and =0.9.
4

N N N N

pD D p C


   

  128 256 512 1024 

22
 

0.912E-03 0.458E-03 0.229E-03 0.115E-03 

32
 

0.130E-02 0.653E-03 0.325E-03 0.162E-03 

42
 

0.184E-02 0.927E-03 0.463E-03 0.231E-03 

52
 

0.262E-02 0.133E-02 0.663E-03 0.331E-03 

62
 

0.368E-02 0.190E-02 0.950E-03 0.474E-03 

ND
 

0.368E-02 0.190E-02 0.950E-03 0.474E-03 

Np
 

0.957E+00 0.997E+00 0.100E+01  

N

pD

 

0.789E+00 0.789E+00 0.768E+00 0.743E+00 

The order of convergence=0.9571305E+00. 

The error constant=0.7893250E+00. 

It can be noted that as N increases and  decreases, 

the error decreases. Numerical solution of

( ) 4 ( ) ( 1) 2u x u x u x       is displayed in figure 

2. 

 

 
Figure 2.   Numerical solution of            

( ) 4 ( ) ( 1) 2u x u x u x       

 

Problem proposed by the decision maker-3: 

The decision maker represents weighting 

vector about the behaviour of the attributes in the 

form of the following Singularly Perturbed delay 

differential Equation: 

( ) (2 ) ( ) ( 1) 0u x x u x u x       for (0,2),x

( ) 1u x  for [ 1,0], (2) 1x u   . 

Four distinct points based on the parameter  are 

identified and the numerical solutions at those points 

are chosen and normalized for obtaining the 

weighting vector. Details of the weight vector from 

the decision maker-3 are given in the following table. 

 

              Table 5. Numerical Solution of 
            ( ) (2 ) ( ) ( 1) 0u x x u x u x        

X
 

Values of U(X)
 

Weight vector 

0.2500000
 

0.4461796
 

0.426800856
 

0.7500000
 

0.3637271
 

0.347929484
 

1.2500000
 

0.1381052
 

0.132106931
 

1.7500000
 

0.09739275
 

0.093162729
 

 

Hence, the weighting vector given by the third 

decision maker is calculated as 

0.426800856,0.347929484,
.

0.132106931,0.093162729

T


 

  
 

 

The maximum point wise errors and the rate of 

convergence are calculated using the two mesh 

algorithm in [12] and are presented in table 6: 

 

  Table 6. Values of , , , for = and =0.9
4

N N N N

pD D p C


   

  128 256 512 1024 

22
 0.694E-03 0.344E-03 0.171E-03 0.854E-04 

32
 0.103E-02 0.507E-03 0.252E-03 0.125E-03 

42
 0.146E-02 0.719E-03 0.356E-03 0.177E-03 

52
 0.207E-02 0.102E-02 0.502E-03 0.249E-03 



International Journal of Research in Advent Technology, Vol.6, No.7, July 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

1390 

 

62
 0.291E-02 0.144E-02 0.708E-03 0.350E-03 

ND  0.291E-02 0.144E-02 0.708E-03 0.350E-03 

Np  0.102E+ 

01 

0.102E+ 

01 

0.101E+ 

01 

 

N

pD

 

 

0.794E+ 

00 

 

0.792E+ 

00 

0.787E+ 

00 

0.787E+ 

00 

 

The order of convergence=0.1014829E+01. 

The error constant=0.7937517E+00. 

It can be noted that as N increases and   decreases, 

the error decreases. Numerical solution of

( ) (2 ) ( ) ( 1) 0u x x u x u x       is displayed in 

figure 3. 

 

 
Figure 3.   Numerical solution of 

( ) (2 ) ( ) ( 1) 0u x x u x u x      
 

6. ALGORTHIM FOR GROUP DECISION 

MAKING WITH INTUITIONISTIC 

FUZZY INFORMATION 

Step:1 Use the IFOWA operator to aggregate all 

individual intuitionistic fuzzy decision matrices 

     ( 1,2,3,4)
k k

ij
m n

R r k


   into a collective  

intuitionistic fuzzy decision matrix R=(rij)mxn. 

Step:2 Utilize the IFHA operator,   

        1 2

,, , ,..., , 1,2,...
t

i i i v w i i ir IFHA r r r i m    

to derive the collective overall preference 

intuitionistic fuzzy values  1,2, ..i i mr    of 

the alternative Ai, with the weighting vectors of the 

decision makers. 

Step:3 Calculate the correlation between the 

collective overall preference values ir  
and the 

positive ideal value ir , where (0,1)ir  . 

 
      

      1

11
,

1

n
A i B i A i

IFS

i B i A i B i

u x u x x
C A B

n x x x



  

  
 

   
  

Step:4 Calculate the correlation coefficient between 

the collective overall preference values ir and the 

positive ideal value ir , where (0,1)ir  .

 
 

 ,
, .

( , ) ( , )

IFS

IFS

IFS IFS

C A B
K A B

C A A C B B
  

Step:5 Rank all the alternatives   1, 2, ,iA i m  and 

select the best one. 

7. NUMERICAL ILLUSTRATION 

Suppose that a tele-communication company 

intends to choose a manager for Research and 

Development department from five volunteers. The 

decision making committee is assessing the five 

concerned volunteers based on four attributes shown as 

follows: 

C1-Proficiency in identifying research areas;  

C2-Proficiency in administration;  

C3-Personality;  

C4-Self Confidence.
 

The five possible alternatives  1,2,3,4,5iA i   are to 

be evaluated using intuitionistic fuzzy numbers by the 

three decision makers whose weighting vectors are 

calculated using singularly perturbed delay differential 

equation. The decision information is listed in the 

following matrices as follows: 

1

(0.5121,0.3239) (0.5232,0.3421) (0.3421,0.5213) (0.2142,0.6124)

(0.6215,0.3128) (0.4852,0.3241) (0.6421,0.2213) (0.4164,0.4315)

(0.5213,0.3168) (0.5285,0.3512) (0.5212,0.3582) (0.2685,0.3585)

(0.7125,0.1625) (0

R 

.6235,0.2285) (0.3543,0.4165) (0.2635,0.5285)

(0.5215,0.2358) (0.4586,0.2385) (0.6212,0.2168) (0.1892,0.3562)

 
 
 
 
 
 
  

 

 

2

(0.4562,0.3283) (0.5283,0.2652) (0.2125,0.5165) (0.1285,0.6256)

(0.5162,0.2856) (0.5131,0.2165) (0.4215,0.3865) (0.3583,0.4265)

(0.5281,0.3165) (0.4123,0.3369) (0.4465,0.2315) (0.5213,0.2260)

(0.6310,0.2215) (0

R 

.5560,0.2131) (0.2650,0.3326) (0.1100,0.5002)

(0.5161,0.1100) (0.3265,0.2613) (0.6125,0.2010) (0.4010,0.2165)

 
 
 
 
 
 
  

 

3

(0.4422,0.3366) (0.5232,0.4100) (0.2565,0.6213) (0.1122,0.6180)

(0.5215,0.3316) (0.5162,0.3322) (0.5283,0.3625) (0.3165,0.5500)

(0.4422,0.4422) (0.4265,0.4125) (0.4000,0.4263) (0.5213,0.3311)

(0.6215,0.2233) (0

R 

.4200,0.3921) (0.2581,0.5110) (0.1265,0.6001)

(0.5126,0.3163) (0.3366,0.4410) (0.6123,0.2121) (0.4111,0.4211)

 
 
 
 
 
 
  

 

4

(0.1283,0.6211) (0.3168,0.5162) (0.3003,0.5110) (0.2650,0.4125)

(0.5120,0.2121) (0.4216,0.2213) (0.5168,0.2650) (0.3256,0.4251)

(0.2683,0.3333) (0.4466,0.3612) (0.3440,0.2862) (0.2168,0.2656)

(0.2666,0.5123) (0

R 

.6600,0.1111) (0.2220,0.5012) (0.5161,0.2300)

(0.7100,0.1220) (0.2255,0.3660) (0.6121,0.1131) (0.4220,0.3413)

 
 
 
 
 
 
  
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By using, step 1 and step 2 of the proposed 

algorithm, we get the overall values as: 

 

 

 

 

1

2

3

4

5

0.408534857357508 ,0.477653955584503

0.478623907908194 ,0.345049520011432

0.467947992690850 ,0.340830269503761

0.393939877495897,0.352536594030511

0.425384973944518,0.259275986

;

;

1

;

;

540

r

r

r

r

r









  04 .

 

By using step 3 and step 4 of the algorithm, we 

calculate the correlation coefficient as follows: 

1( , )K r r 
= 0.978305069439398, 

2( , )K r r 
= 0.965570095974722, 

3( , )K r r 
= 0.959434473942105, 

4( , )K r r 
= 0.921435879554324, 

5( , )K r r 
= 0.905587331782648. 

 

Ranking the best alternative according to the 

correlation coefficient, we get: 

1 2 3 4 5.A A A A A     

Using step 3 of the same algorithm proposed in the 

paper with different distance measures [15], we obtain 

the ranking of best alternatives and the results are 

tabulated as follows: 

 

Table 7. Comparison of the Ranking with Distance 

Measures            

DISTANCE 

MEASURES 

RANKING 

THE ALTERNATIVES 

1( , )d A B .  Hamming  

                  Distance 
 

1 4 3 2 5A A A A A     

2( , )d A B . Normalized 

  Hamming  Distance 

 

1 4 3 2 5A A A A A     

3( , )d A B . Euclidean 

                 Distance
 

1 4 3 5 2A A A A A     

4( , )d A B . Normalized 

   Euclidean  Distance 

1 4 3 5 2A A A A A     

5( , )d A B .  Hamming  

                  Distance 
 

4 1 4 3 2A A A A A     

6( , )d A B . Normalized 

  Hamming  Distance 
 

1 4 3 5 2A A A A A     

7 ( , )d A B . Euclidean 

                 Distance
 

1 4 5 3 2A A A A A     

8( , )d A B . Normalized 

   Euclidean  Distance
 

1 4 5 3 2A A A A A     

1( , )hd A B .  Hamming  

                  Distance 

 

4 1 4 3 2A A A A A     

2( , )hd A B . Normalized 

  Hamming  Distance 

 

4 1 4 3 2A A A A A     

3( , )hd A B . Euclidean 

                 Distance 

4 1 5 2 3A A A A A     

4( , )hd A B . Normalized 

   Euclidean  Distance 

4 1 5 2 3A A A A A     

 

Using step 3 of the same algorithm proposed in the 

paper with different similarity measures [8], we 

obtain the ranking of best alternatives and the results 

are tabulated as follows: 

 

Table 8. Comparison of the Ranking with Similarity 

Measures 

SIMILARITY  

MEASURES 

RANKING THE 

ALTERNATIVES 

1.Chen’s Measure
 

5 2 3 4 1A A A A A     

2.Hong &Kim’s Measure
 

5 2 3 4 1A A A A A     

3.Li &Xu’sMeasure
 

5 2 3 4 1A A A A A     

4.Li et al.’s Measure
 

5 2 3 4 1A A A A A     

5.Li &Chuntian’s 

Measure
 5 2 3 4 1A A A A A     

6.Mitchell’s Measure
 

5 3 2 4 1A A A A A     

7.Hung & Yang’s Measure  

(SHY_1) 

SHY_2 

SHY_3 

5 3 2 4 1A A A A A     

5 3 2 4 1A A A A A   

5 3 2 4 1A A A A A     

8.Ye’s Measure
 

5 2 3 4 1A A A A A     

9.Chen, S.M., & 

Randyanto,Y,. Measure
 2 3 5 4 1A A A A A     

 

Using step 3 of the same algorithm proposed in the 

paper with different score functions [7], we obtain the 

ranking of best alternatives and the results are 

tabulated as follows: 

 

Table 9. Comparison of the Ranking with Score 

Functions 

SCORE  

FUNCTIONS 

RANKING  

THE ALTERATIVES 

1. 1( )ijS X

 

5 2 3 4 1A A A A A     

2. 2 ( )ijS X  2 3 1 5 4A A A A A     

3. 3( )ijS X  2 3 5 1 4A A A A A     



International Journal of Research in Advent Technology, Vol.6, No.7, July 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

1392 

 

4. 4 ( )ijS X  1 2 3 4 5A A A A A     

5. 5 ( ), 0.3ijS X    

6. 5 ( ), 0.5ijS X    

7. 5 ( ), 0.7ijS X    

5 2 3 4 1A A A A A     

5 2 3 4 1A A A A A     

2 3 5 4 1A A A A A     

 

8. DISCUSSION 

In this work, the weights of the decision makers are 

presented in the form of Singularly Perturbed Delay 

Differential Equations whose solutions are sought 

through a new hybrid finite difference scheme 

operator with an appropriate Shishkin mesh which is 

used to construct numerical methods to solve the 

SPDDEs. From table 7, 8 and 9 it can be observed 

that using different ranking methods can yield 

differences in the ranking of best alternative. Since 

correlation coefficient can bring out the linear 

relationship between the variables under study, the 

ranking of alternatives based on the new proposed 

correlation coefficient of IFSs in this paper can be 

considered to be the best ranking process. 

9. CONCLUSION 

In this work, we have discussed about the 

weight determining methods together with weighted 

averaging operator and the ordered weighted 

averaging operator, which extend two of the most 

common aggregation operators to accommodate the 

situations where the input arguments are intuitionistic 

fuzzy values. The IFWA operator weights only the 

intuitionistic fuzzy arguments, while the IFOWA 

operator weights only the ordered positions of the 

intuitionistic fuzzy arguments instead of weighting the 

intuitionistic fuzzy arguments themselves. We have 

developed the MAGDM model based on hybrid 

aggregation operator (IFHA), which weights both the 

given interval valued intuitionistic fuzzy value and its 

ordered position of the argument. In this paper, a new 

approach for determining weights of decision makers 

in group decision environment based on singular 

perturbation problem is proposed. The decision maker 

weights are calculated using the numerical solution of 

SPDDE of reaction-diffusion type problem and 

applied in MAGDM problems under intuitionistic 

fuzzy set. The weights calculated by the proposed 

method, which can relieve the influence of unfair 

arguments on the final results by assigning low 

weights to those unduly high or unduly low ones, and 

hence make the decision results more precise and 

reasonable when applied to decision making based on 

intuitionistic fuzzy information. Different 

comparisons were made with existing ranking 

methods and the effectiveness of the proposed method 

was displayed by numerical illustration. 
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